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A geometric approach to topological groups

The goal of our talk is to present a new geometric approach to the study
of Polish and more general topological groups.

As it turns out, this theory will extend geometric group theory of finitely
and compactly generated groups and thus permit a full scale import of the
vocabulary, tools and problems of that theory to our more general setting.

Similarly, our theory generalises geometric non-linear functional analysis
and hence provides a common framework for these two hitherto disjoint
theories.

Again, this allows for a unified approach to several similar problems in the
two areas.
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Uniform spaces

To understand the framework, let us recall A. Weil’s concept of uniform
spaces.

A uniform space is a set X equipped with a family U of subsets
E ⊆ X × X called entourages verifying the following conditions.

1 Every E ∈ U contains the diagonal ∆ = {(x , x)
∣∣ x ∈ X},

2 U is closed under taking supersets, finite intersections and inverses,
E 7→ E−1 = {(y , x)

∣∣ (x , y) ∈ E},
3 for any E ∈ U , there is F ∈ U so that

F ◦ F = {(x , z)
∣∣ ∃y (x , y), (y , z) ∈ F} ⊆ E .

A uniform space is intended to capture the idea of being uniformly close in
a topological space and hence gives rise to concepts of Cauchy sequences
and completeness.
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Pseudometric spaces

The canonical example of a uniform space is when (X , d) is a metric or,
more generally, a pseudometric space.

Recall here that a pseudometric space is a set X equipped with an écart.

In this case, we may, for every α > 0, set

Eα = {(x , y)
∣∣ d(x , y) < α}

and define a uniformity Ud by

Ud = {E ⊆ X × X
∣∣ ∃α > 0 Eα ⊆ E}.
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J. Roe’s Coarse spaces

A coarse space is a set X equipped with a collection E of subsets
E ⊆ X × X called entourages satisfying the following conditions.

1 The diagonal ∆ belongs to E ,

2 if E ⊆ F ∈ E , then also E ∈ E ,

3 if E ,F ∈ E , then E ∪ F ,E−1,E ◦ F ∈ E .

Again, if (X , d) is a pseudometric space, there is a canonical coarse
structure Ed obtained by

Ed = {E ⊆ X × X
∣∣ ∃α <∞ E ⊆ Eα}.

The main point here is that, for a uniform structure, we are interested in
Eα for α small, but positive, while, for a coarse structure, α is often large,
but finite.
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Left-uniform structure on a topological group

If G is a topological group, its left-uniformity UL is that generated by
entourages of the form

EV = {(x , y) ∈ G × G
∣∣ x−1y ∈ V },

where V varies over all identity neighbourhoods in G .

A basic theorem, due essentially to G. Birkhoff (fils) and S. Kakutani, is
that

UL =
⋃
d

Ud ,

where the union is taken over all continuous left-invariant écarts d on G ,
i.e., so that d(zx , zy) = d(x , y).

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 6 / 28



Left-uniform structure on a topological group

If G is a topological group, its left-uniformity UL is that generated by
entourages of the form

EV = {(x , y) ∈ G × G
∣∣ x−1y ∈ V },

where V varies over all identity neighbourhoods in G .

A basic theorem, due essentially to G. Birkhoff (fils) and S. Kakutani, is
that

UL =
⋃
d

Ud ,

where the union is taken over all continuous left-invariant écarts d on G ,
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Left-coarse structure on a topological group

Now, coarse structures should be viewed as dual to uniform structures, so
we obtain appropriate definitions by placing negations strategically in
definitions for concepts of uniformities.

Definition

If G is a topological group, its left-coarse structure EL is given by

EL =
⋂
d

Ed ,

where the intersection is taken over all continuous left-invariant écarts d
on G.
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on G.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 7 / 28



Relatively OB sets

The definition of the coarse structure EL is not immediately transparent
and it is thus useful to have alternate descriptions of it.

Definition

A subset A ⊆ G of a topological group is said to be relatively (OB) in G if

diamd(A) <∞

for every continuous left-invariant écart d on G.

One may easily show that the class OB of relatively (OB) subsets is an
ideal of subsets of G stable under the operations

A 7→ A−1, (A,B) 7→ AB and A 7→ A.
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One may easily show that the class OB of relatively (OB) subsets is an
ideal of subsets of G stable under the operations

A 7→ A−1, (A,B) 7→ AB and A 7→ A.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 8 / 28



Proposition

The left-coarse structure EL on a topological group G is generated by
entourages of the form

EA = {(x , y)
∣∣ x−1y ∈ A},

where A ∈ OB.

For simplicity, we focus on an extension of the class of Polish groups,
encompassing all Banach spaces and locally compact σ-compact groups.

Definition

A topological group G is European if it is Baire and is countably generated
over every identity neighbourhood, i.e., for every V 3 1 open, there is a
countable set D ⊆ G so that G = 〈D ∪ V 〉.
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By the mechanics of the Birkhoff–Kakutani metrisation theorem, we have
the following description of the relatively (OB) sets.

Proposition

A subset A of a European topological group G is relatively (OB) if and
only if, for every identity neighbourhood V , there are a finite set F ⊆ G
and k > 1 so that

A ⊆ (FV )k .

• For example, the relatively (OB) subsets of a countable discrete group
are simply the finite sets.

• More generally, in a locally compact σ-compact group, they are the
relatively compact subsets.

• Similarly, in the underlying additive group (X ,+) of a Banach space
(X , ‖ · ‖), they are the norm bounded subsets.
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Metrisability

As with the topology and left-uniformity on a topological group,
metrisability of the left-coarse structure is not automatic.

Here a coarse space (X , E) is metrisable if there is a metric d on X so that
E = Ed .

Theorem

The following conditions are equivalent for a European group G.

1 The left-coarse structure EL is metrisable,

2 there is a continuous left-invariant écart d on G so that EL = Ed ,

3 G is locally (OB), i.e., there is a relatively (OB) identity
neighbourhood V ⊆ G.
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In case d is a continuous left-invariant écart inducing the coarse structure
on G , that is, EL = Ed , we say that d is coarsely proper.

Thus, d is coarsely proper if and only if the finite d-diameter subsets of G
are simply the relatively (OB) sets.

Alternatively, we may quasiorder the continuous left-invariant écarts on G
by

∂ ≪ d ⇔ ∃ρ : R+ → R+ so that ∂(x , y) 6 ρ
(
d(x , y)

)
.

The coarsely proper écarts are then the maximal elements in this ordering.

The previous theorem can be seen as an extension of a result due to S.
Kakutani and K. Kodaira stating that any locally compact σ-compact
group carries a continuous left-invariant proper écart, i.e., so that balls are
compact.
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compact.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 12 / 28



In case d is a continuous left-invariant écart inducing the coarse structure
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Quasimetric spaces

The previous definitions and results identifies a canonical coarse geometry
of every topological group G , that for locally (OB) European groups is
given by a coarsely proper écart.

However, in several classical cases, an even stronger canonical geometry
can be detected, i.e., a geometry distinguishing finer features of the
spaces/groups.

Definition

A map φ : (M, dM)→ (N, dN) between pseudometric spaces is said to be a
quasi-isometric embedding if there are constants K and C so that

1

K
· dM(x , y)− C 6 dN(φx , φy) 6 K · dM(x , y) + C .

Moreover, φ is a quasi-isometry if in addition φ[M] is cobounded in N,
that is, supy∈N dN(y , φ[M]) <∞.
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However, in several classical cases, an even stronger canonical geometry
can be detected, i.e., a geometry distinguishing finer features of the
spaces/groups.

Definition

A map φ : (M, dM)→ (N, dN) between pseudometric spaces is said to be a
quasi-isometric embedding if there are constants K and C so that

1

K
· dM(x , y)− C 6 dN(φx , φy) 6 K · dM(x , y) + C .

Moreover, φ is a quasi-isometry if in addition φ[M] is cobounded in N,
that is, supy∈N dN(y , φ[M]) <∞.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 13 / 28



Quasimetric spaces

The previous definitions and results identifies a canonical coarse geometry
of every topological group G , that for locally (OB) European groups is
given by a coarsely proper écart.
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Example: Finitely generated groups

Consider a finitely generated group Γ and fix a finite symmetric generating
set S ⊆ Γ.

We may define a length function on Γ by letting

`S(x) = min(k
∣∣ ∃s1, . . . , sk ∈ S : x = s1 · · · sk).

From this we define a left-invariant metric, called the word metric, on Γ by

ρS(x , y) = `S(x−1y).

The fundamental observation underlying geometric group theory is then
that given any two finite symmetric generating sets S ,S ′ ⊆ Γ, the word
metrics ρS and ρS ′ are quasi-isometric, i.e.,

id : (Γ, ρS)→ (Γ, ρS ′) is a quasi-isometry.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 14 / 28



Example: Finitely generated groups

Consider a finitely generated group Γ and fix a finite symmetric generating
set S ⊆ Γ.

We may define a length function on Γ by letting

`S(x) = min(k
∣∣ ∃s1, . . . , sk ∈ S : x = s1 · · · sk).

From this we define a left-invariant metric, called the word metric, on Γ by

ρS(x , y) = `S(x−1y).

The fundamental observation underlying geometric group theory is then
that given any two finite symmetric generating sets S ,S ′ ⊆ Γ, the word
metrics ρS and ρS ′ are quasi-isometric, i.e.,

id : (Γ, ρS)→ (Γ, ρS ′) is a quasi-isometry.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 14 / 28



Example: Finitely generated groups

Consider a finitely generated group Γ and fix a finite symmetric generating
set S ⊆ Γ.

We may define a length function on Γ by letting

`S(x) = min(k
∣∣ ∃s1, . . . , sk ∈ S : x = s1 · · · sk).

From this we define a left-invariant metric, called the word metric, on Γ by

ρS(x , y) = `S(x−1y).

The fundamental observation underlying geometric group theory is then
that given any two finite symmetric generating sets S ,S ′ ⊆ Γ, the word
metrics ρS and ρS ′ are quasi-isometric, i.e.,

id : (Γ, ρS)→ (Γ, ρS ′) is a quasi-isometry.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 14 / 28



Example: Finitely generated groups

Consider a finitely generated group Γ and fix a finite symmetric generating
set S ⊆ Γ.

We may define a length function on Γ by letting

`S(x) = min(k
∣∣ ∃s1, . . . , sk ∈ S : x = s1 · · · sk).

From this we define a left-invariant metric, called the word metric, on Γ by

ρS(x , y) = `S(x−1y).

The fundamental observation underlying geometric group theory is then
that given any two finite symmetric generating sets S , S ′ ⊆ Γ, the word
metrics ρS and ρS ′ are quasi-isometric,

i.e.,

id : (Γ, ρS)→ (Γ, ρS ′) is a quasi-isometry.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 14 / 28



Example: Finitely generated groups

Consider a finitely generated group Γ and fix a finite symmetric generating
set S ⊆ Γ.

We may define a length function on Γ by letting

`S(x) = min(k
∣∣ ∃s1, . . . , sk ∈ S : x = s1 · · · sk).

From this we define a left-invariant metric, called the word metric, on Γ by

ρS(x , y) = `S(x−1y).

The fundamental observation underlying geometric group theory is then
that given any two finite symmetric generating sets S , S ′ ⊆ Γ, the word
metrics ρS and ρS ′ are quasi-isometric, i.e.,

id : (Γ, ρS)→ (Γ, ρS ′) is a quasi-isometry.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 14 / 28



Quasimetric structure

To generalise the example of finitely generated groups, we refine the
quasiordering ≪ of continuous left-invariant écarts as follows.

∂ � d ⇔ ∃K ,C ∂ 6 K · d + C .

The maximal elements in this ordering (provided they exist) are called
maximal écarts on G .

Since � refines ≪, every maximal écart is automatically coarsely proper.

Also, any two maximal écarts are necessarily quasi-isometric and thus
provide a canonical and well-defined quasimetric structure on G , that is, a
space with a quasi-isometric equivalence class of écarts.
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maximal écarts on G .
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Proposition

The following are equivalent for a continuous left-invariant écart d on a
topological group G.

1 d is maximal,

2 there is a relatively (OB) subset A ⊆ G algebraically generating G so
that d and ρA are quasi-isometric.

Theorem

A European group G admits a maximal écart if and only if G is (OB)
generated, that is, there is a relatively (OB) subset A ⊆ G algebraically
generating G.
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Examples

The word metric ρS of a finite symmetric generating set S of a discrete
group Γ is maximal and thus identifies the quasimetric structure of Γ as a
topological group.

For example, the free non-abelian group F2 on two generators a, b gives
rise to the quasimetric space

• •

•

•

•

•

•
a−1

bba−1 ba

1

b−1

a

aba−1b

a−1b−1 ab−1

b−1a−1 b−1a

b−2
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a2a−2
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Similarly, every compactly generated locally compact group admits a
continuous left-invariant écart quasi-isometric to the word metric of a
compact generating set.

Proposition

Any continuous left-invariant geodesic écart is maximal.

Thus, the norm-metric d‖·‖ on a Banach space (X , ‖ · ‖) is maximal.

From these examples we see that the theory presented is a conservative
extension of geometric group theory for finitely or compactly generated
groups and of the geometric non-linear analysis of Banach spaces.
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Homeomorphism groups

Let M be a compact manifold and V = {Vi}ki=1 an open covering of M.

By fundamental work of Edwards and Kirby, there is an identity
neighbourhood U in Homeo(M) so that every element h ∈ U can be
written as h = g1 · · · gk , where

supp(gi ) ⊆ Vi .

We may thus define the corresponding fragmentation norm on the identity
component Homeo0(M) of isotopically trivial homeomorphisms by letting

`V(h) = min(m
∣∣ h = g1 · · · gm & supp(gi ) ⊆ Vji for some ji ).

From this, we obtain a left-invariant metric by

ρV(g , f ) = `V(g−1f ).
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Proposition (K. Mann & C.R.)

For all sufficiently fine open covers V of a compact manifold M, the metric
ρV is quasi-isometric to a maximal metric on Homeo0(M).

We should mention that, in the case of compact surfaces M, E. Militon in
previous work has been able to explicitly describe this maximal metric as
the maximal displacement metric on the universal cover M̃.

Theorem

For all n > 1, Homeo0(Sn) is quasi-isometric to a point.

Theorem (K. Mann and C.R.)

Let M be a compact manifold of dimension > 2 so that π1(M) contains
an element of infinite order. Then there is a quasi-isometric isomorphic
embedding of the Banach space C ([0, 1]) into Homeo0(M).
In particular, every separable metric space admits a quasi-isometric
embedding into Homeo0(M).

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 20 / 28



Proposition (K. Mann & C.R.)

For all sufficiently fine open covers V of a compact manifold M, the metric
ρV is quasi-isometric to a maximal metric on Homeo0(M).

We should mention that, in the case of compact surfaces M, E. Militon in
previous work has been able to explicitly describe this maximal metric as
the maximal displacement metric on the universal cover M̃.

Theorem

For all n > 1, Homeo0(Sn) is quasi-isometric to a point.

Theorem (K. Mann and C.R.)

Let M be a compact manifold of dimension > 2 so that π1(M) contains
an element of infinite order. Then there is a quasi-isometric isomorphic
embedding of the Banach space C ([0, 1]) into Homeo0(M).
In particular, every separable metric space admits a quasi-isometric
embedding into Homeo0(M).

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 20 / 28



Proposition (K. Mann & C.R.)

For all sufficiently fine open covers V of a compact manifold M, the metric
ρV is quasi-isometric to a maximal metric on Homeo0(M).

We should mention that, in the case of compact surfaces M, E. Militon in
previous work has been able to explicitly describe this maximal metric as
the maximal displacement metric on the universal cover M̃.

Theorem

For all n > 1, Homeo0(Sn) is quasi-isometric to a point.

Theorem (K. Mann and C.R.)

Let M be a compact manifold of dimension > 2 so that π1(M) contains
an element of infinite order. Then there is a quasi-isometric isomorphic
embedding of the Banach space C ([0, 1]) into Homeo0(M).
In particular, every separable metric space admits a quasi-isometric
embedding into Homeo0(M).

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 20 / 28



Proposition (K. Mann & C.R.)

For all sufficiently fine open covers V of a compact manifold M, the metric
ρV is quasi-isometric to a maximal metric on Homeo0(M).

We should mention that, in the case of compact surfaces M, E. Militon in
previous work has been able to explicitly describe this maximal metric as
the maximal displacement metric on the universal cover M̃.

Theorem

For all n > 1, Homeo0(Sn) is quasi-isometric to a point.

Theorem (K. Mann and C.R.)

Let M be a compact manifold of dimension > 2 so that π1(M) contains
an element of infinite order.

Then there is a quasi-isometric isomorphic
embedding of the Banach space C ([0, 1]) into Homeo0(M).
In particular, every separable metric space admits a quasi-isometric
embedding into Homeo0(M).

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 20 / 28



Proposition (K. Mann & C.R.)

For all sufficiently fine open covers V of a compact manifold M, the metric
ρV is quasi-isometric to a maximal metric on Homeo0(M).

We should mention that, in the case of compact surfaces M, E. Militon in
previous work has been able to explicitly describe this maximal metric as
the maximal displacement metric on the universal cover M̃.

Theorem

For all n > 1, Homeo0(Sn) is quasi-isometric to a point.

Theorem (K. Mann and C.R.)

Let M be a compact manifold of dimension > 2 so that π1(M) contains
an element of infinite order. Then there is a quasi-isometric isomorphic
embedding of the Banach space C ([0, 1]) into Homeo0(M).

In particular, every separable metric space admits a quasi-isometric
embedding into Homeo0(M).

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 20 / 28



Proposition (K. Mann & C.R.)

For all sufficiently fine open covers V of a compact manifold M, the metric
ρV is quasi-isometric to a maximal metric on Homeo0(M).

We should mention that, in the case of compact surfaces M, E. Militon in
previous work has been able to explicitly describe this maximal metric as
the maximal displacement metric on the universal cover M̃.

Theorem

For all n > 1, Homeo0(Sn) is quasi-isometric to a point.

Theorem (K. Mann and C.R.)

Let M be a compact manifold of dimension > 2 so that π1(M) contains
an element of infinite order. Then there is a quasi-isometric isomorphic
embedding of the Banach space C ([0, 1]) into Homeo0(M).
In particular, every separable metric space admits a quasi-isometric
embedding into Homeo0(M).

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 20 / 28



Applications to model theory

To ensure a proper translation between properties of a countable
first-order structure A and its automorphism group, we shall work under
the relatively mild assumption that A is ω-homogeneous.

That is, for all finite tuples a and b in A,

O(a) = O(b) ⇔ tpA(a) = tpA(b),

where O(a) denotes the orbit of a under the action of Aut(A) on A|a|.

So assume A is a countable ω-homogeneous structure, a is a finite tuple in
A and S is a finite collection of parameter-free complete types on A.

Xa,S is the graph on O(a) obtained by connecting distinct b, c ∈ O(a) by
an edge if and only if

tpA(b, c) ∈ S or tpA(c , b) ∈ S.
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Theorem

Let A be a countable ω-homogeneous structure. Then Aut(A) admits a
maximal metric if and only if there is a finite tuple a in A satisfying the
following two requirements.

1 There is a finite set R of parameter-free types so that Xa,R is
connected, and

2 for every tuple b extending a, there is a finite set S of parameter-free
types so that

{c ∈ O(b)
∣∣ c extends a}

has finite diameter in the graph Xb,S .

Condition (2), which in itself is equivalent to Aut(A) being locally (OB),
may require some amount of work to verify.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 22 / 28



Theorem

Let A be a countable ω-homogeneous structure. Then Aut(A) admits a
maximal metric if and only if there is a finite tuple a in A satisfying the
following two requirements.

1 There is a finite set R of parameter-free types so that Xa,R is
connected,

and

2 for every tuple b extending a, there is a finite set S of parameter-free
types so that

{c ∈ O(b)
∣∣ c extends a}

has finite diameter in the graph Xb,S .

Condition (2), which in itself is equivalent to Aut(A) being locally (OB),
may require some amount of work to verify.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 22 / 28



Theorem

Let A be a countable ω-homogeneous structure. Then Aut(A) admits a
maximal metric if and only if there is a finite tuple a in A satisfying the
following two requirements.

1 There is a finite set R of parameter-free types so that Xa,R is
connected, and

2 for every tuple b extending a, there is a finite set S of parameter-free
types so that

{c ∈ O(b)
∣∣ c extends a}

has finite diameter in the graph Xb,S .

Condition (2), which in itself is equivalent to Aut(A) being locally (OB),
may require some amount of work to verify.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 22 / 28



Theorem

Let A be a countable ω-homogeneous structure. Then Aut(A) admits a
maximal metric if and only if there is a finite tuple a in A satisfying the
following two requirements.

1 There is a finite set R of parameter-free types so that Xa,R is
connected, and

2 for every tuple b extending a, there is a finite set S of parameter-free
types so that

{c ∈ O(b)
∣∣ c extends a}

has finite diameter in the graph Xb,S .

Condition (2), which in itself is equivalent to Aut(A) being locally (OB),
may require some amount of work to verify.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 22 / 28



Theorem (Milnor–Švarc Theorem)

For a and R as above, the map

g ∈ Aut(A) 7→ g · a ∈ Xa,R

is a quasi-isometry between Aut(A) and Xa,R.

As an application of this, let T denote the ℵ0-regular unrooted tree.

Then, if a is a single vertex and R = {E} consist of the single type which
is the edge relation, Conditions (1) and (2) are verified.

So
g ∈ Aut(T) 7→ g(a) ∈ T

is a quasi-isometry between Aut(T) and Xa,R = T.
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For a and R as above, the map

g ∈ Aut(A) 7→ g · a ∈ Xa,R

is a quasi-isometry between Aut(A) and Xa,R.

As an application of this, let T denote the ℵ0-regular unrooted tree.

Then, if a is a single vertex and R = {E} consist of the single type which
is the edge relation, Conditions (1) and (2) are verified.

So
g ∈ Aut(T) 7→ g(a) ∈ T

is a quasi-isometry between Aut(T) and Xa,R = T.

Christian Rosendal Coarse geometry of topological groups Marseille, June 2015 23 / 28



Theorem (Milnor–Švarc Theorem)
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The verification that Aut(A) is locally (OB) often relies on identifying an
appropriate independence relation |̂ a between finite subsets of A relative
to a fixed finite tuple a in A.

The requirements on |̂ a are the model theoretical conditions of
symmetry, monotonicity, existence and stationarity.

K. Tent and M. Ziegler have shown that similar notions appear in Fräıssé
classes provided these admit a canonical amalgamation scheme.

For our purposes, we require somewhat more.

Definition

Given an Fräıssé class K with limit K and a finitely generated substructure
A ⊆ K, we say that K satifies functorial amalgamation over A if there is a
way of choosing the amalgamations over A in the class K to be functorial
with respect to embeddings.
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For example, the Fräıssé class of finite metric spaces admits a functorial
amalgamation over a single point, namely the free amalgamation.

Theorem

Suppose K is a Fräıssé class with limit K and assume that A is a finitely
generated substructure of K so that K admits a functorial amalgamation
over A.
Then Aut(K) is locally (OB).

Using this, we may show that, for any fixed point p ∈ QU, the map

g ∈ Isom(QU) 7→ g(p) ∈ QU

is a quasi-isometry.
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In many familiar cases, though we are able to identify the large scale
geometry of a topological group, it turns out that this is trivial.

Theorem (P. Cameron )

Let A be an ℵ0-categorical countable structure.
Then Aut(A) is quasi-isometric to a point.

Similarly, using forking calculus, we may show the same conclusion for
certain stable structures.

Theorem

Let A be a saturated countable model of an ω-stable theory.
Then Aut(A) is quasi-isometric to a point.
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The stability of the underlying structure is similarly reflected in the large
scale geometry in the absence of saturation.

Theorem

Suppose M is a countable atomic model of a stable theory T so that
Aut(M) is locally (OB). Then Aut(M) admits a compatible left-invariant
coarsely proper stable metric.
It follows that Aut(M) has a coarsely proper continuous affine isometric
action on a reflexive Banach space.

Motivated by the preceding results, one could be hopeful that the
assumption that Aut(M) be locally (OB) would be superflous.

However, this is not so.

Theorem (J. Zielinski)

There is an atomic model M of an ω-stable theory so that Aut(M) is not
locally (OB).
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